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Abstract

Software architecture appears to be one of the main
factors affecting software maintainability.
Therefore, in order to be able to predict and assess
maintainability early in the development process
we need to be able to measure the high-level
design characteristics that affect the change
process. To this end, we propose a measurement
approach, which is based on precise assumptions
derived from the change process, which is based on
Object-Oriented Design principles and is partially
language independent. We define metrics for
cohesion, coupling, and visibility in order to
capture the difficulty of isolating, understanding,
designing and validating changes.

1 Introduction

It has been shown that system architecture has an
heavy impact on maintainability [R90, $90].
Numerous studies have attempted to capture the
high-level design characteristcs affecting the ease
of maintenance of a software system [HK84, R87,
$90]. Research in the field of design metrics [G86,
SB91, Z91, AE92] has often been conducted
according to a strategy intended to produce generic
metrics assumed to be applicable in a variety of
contexts and to many problem domains. However,
such an approach has forced researchers to work
without a clear framework and a well-defined goal.
This frequently led to some degree of fuzziness in
the metric definitions, properties, and underlying
concepts, making the use of the metric difficult,
the interpretation hazardous, and the results of the
various validation studies somewhat contradictory
[IS88, K88]. Some attempts were made to
constrain the context of application to a particular
programming language in order to come up with
precisely and unambiguously defined
metrics[AE92]. In other cases, the application
domain of those metrics was restricted, e.g., error-
prone subprograms [SB91], maintainability [R87].
In all cases (with the exception of [AE92], where
these issues were partially addressed), no precise
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link was made between the studied process (e.g.,
change process) and the metrics, no clear and
precisely det'med assumptions were made about the
process itself, and metrics were not defined by
taking into account the specific issue to be
addressed (e.g., maintainability).
We intentionally place ourselves in a well-defined
framework (Ada [DoD83] and OOD[BO87]) and
intend to focus exclusively on the change process
during acceptance testing and maintenance, i.e., the
change process performed by personnel who did
not develop the software. Thereby, we propose
more precise and effective high-level design
metrics based on well-defined and verifiable
assumptions which are closely related to the
specific change process model instantiated at the
NASA Goddard Space Flight Center. Thus, the
applicability of those metrics is precisely defined,
their validation easier, and their predictive ability
more accurate. However, we also attempt to
separate Ada specific concepts from language
independent concepts in order to identify the part of
the approach that is reusable for other
programming languages.
Our goals can be expressed by using Basili's
G/Q/M template [BR88]:

Analyze the high-level design of a software
system for the purpose of prediction with
respect to change difficulty from the point of
view of the testers and maintainers.

Analyze the high-level design of a software
system for the purpose of evaluation with
respect tOchange difficulty from the point of
view of the designers.

From a modeling perspective, our long-term goal
is to be able to build models that predict change
difficulty for the maintenance process, which will
provide an early evaluation of maintainability,
thus allowing better architectural/design decisions.
This paper first provides in Section 2 basic
background information on the change process
model and general definitions about the system
constructs and the high-level design products.
Section 3 presents the underlying concepts leading
to the definitions of two basic metrics on top of
which we define metrics for capturing module
cohesion (Section 4), module coupling (Section
5), and coupling-based visibility control (Section
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6). Finally, Section 7 summarizes the paper and
presents the future directions of our research.

2 Background and Definitions

We first present the change process as perceived in
our maintenance environment. Thus, we will be
able to identify the various aspects of change
difficulty (the quality perspective [BR88] of the
goals of Section 1) and link our assumptions to
this process so as to give a fh-m ground to our
metrics. Then, we provide definitions for high-
level design of a software system (the object of
study of the goals of Section 1) and its basic
constructs.

2.1 Change Process Model

In our environment of study (NASA Software
Engineering Laboratory at the Goddard Space
Flight Center), we view software maintenance as
being composed of four primary phases, each
encapsulating activities that may be performed
concurrently, as shown in Figure 1.
There is a key milestone in the change process
which is the decision of whether the change is

going to be implemented or not. This is done
based on a cost-benefit analysis after phase P1.
The information necessary to this analysis is
gathered during Pl and used for predicting the
difficulty of designing, implementing and testing
the change [BB92]. This information will
encompass a description of the change itself and of
the part of the system where the change is
l_fomed.

2.2 Object of Study

In the literature, there are two commonly accepted
definitions of modules. The t'u'st one sees a module

as a subprogram, and has been used in most of the
design measurement publications [M77, CY79,
HK84, R87, $90]. We choose the second category,
which takes an object-oriented perspective, where a
module is seen as a collection of routines, data and
type definitions, i.e., a provider of computational
services [13087, G921.

Definition 1: Module.
A module is either a (possibly generic)
subprogram, a (possibly generic) package, or a
task. As such, a module comprises a specification
and possibly a body.

Remark." Ada units vs. modules.
Compilation units are used in Ada for determining
the compilation order and strategy. Instead,
modules are defined here as Ariaprogram units. We
use the term module because it is a language
independent concept. There are two kinds of Ada
compilation units [DoD 83]: library units and
secondary units. A library unit is either a package
specification, a subprogram specification, or a
whole subprogram which does not have a parent
unit. Therefore, a library unit can be a module
specification ot a whole module. An Ada secondary
unit is a unit with a parent unit and can only be a
module body.

Definition 2: Data declaration.
A data declaration is either a type or an object
(e.g., a constant, a variable, a formal parameter of
a (possibly generic) subprogram or an entry, a
generic formal objec0.

Definition 3: High-level Design product
The high-level design product is a collection of
module specifications, either representing library
units or belonging to secondary units, related by
"uses" or "is a component of" [CO2] relationships.
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Since the remaining contents of units (e.g. local

variables, algorithms) still remains to be
determined in later design stages, our high-level
design metrics will be mostly based on the

information contained in module specifications.
However, additional information to what is visible
in the specifications may be available at the end of
high-level design. For instance, given the
specification of a module m, the designers have at
least a rough idea of which objects declared in m's
and other modules' specification will be
manipulated by a subprogram in m's specification.
It will be left to the person responsible for the
metric program to decide whether or not it is worth
collecting this kind of information, thus making
the designer describe which global objects will be
accessed by which subprograms or entries. For
example, formatted comments might be a
convenient way of conveying this information
through module specifications and therefore of
automating the collection of this type of
information.

3 Interactions

We are looking for a primitive measure that links
tim change difficulty to the system design.
We therefore focus on the relationships that
propagate side effects from data declarations to data
declarations or subprograms when a change is
performed. Those relationships will be called
interactions and will be used to define metrics

capturing cohesion and coupling within and

between modules, respectively. Interactions
linking subprograms to subprograms or data
declarations will generally not be considered
because they are encapsulated in module bodies and
are therefore not detectable in our framework.

However, these interactions are likely to be
valuable although they will be rarely provided by
the designer at the end of high-level design. For
the sake of simplicity, we will not address this
issue in the remainder of this paper. In all cases,
these interactions will appear useful when looking
at low-level design.

Definition 4: Data declaration-Data declaration
(DD) Interaction.
A data declaration A DD-interacts with another data

declaration B if a change in A's declaration or use
may cause the need for a change in B's declaration
or use.

The DD-interaction relationship is transitive. If A
DD-interacts with B, and B DD-interacts with C,
then a change in A may cause a change in C, i.e.,
A DD-interacts with C.

Data declarations can DD-interact with each other

regardless of their location in the designed system.
Therefore, the DD-interaction relationship can link
data declarations belonging to the same module or
to different modules.

By DD-interactions(Dec_setl, Dec_set2), we will
denote the number of DD-interactions from the set
of data declarations Dec_setl to the set of data
declarations Dec_set2.

At the end of high-level design, we may not have
sufficient knowledge to understand with certainty
whether there will be an interaction between two

data declarations in the final software system,
because we are not aware of all the DD-interactions

present in the modules' bodies. On the basis of the
information available from module specifications
and their "uses" and "is a component of"
relationships [G92], and from additional
information provided by the designer, we can
identify (1) the specification data declaration pairs
that are known to DD-interact with each other, and

(2) the specification data declaration pairs which
may DD-interact with each other. We will say that
there is an actual DD-interaction between data

declaration pairs satisfying (1), and apotential DD-
interaction between data declaration pairs satisfying
(2). The latter kind of DD-interactions is only
detectable by examining both specifications and
bodies. Therefore, the set of actual DD-interactions
is a subset of the set of potential DD-interactions.
The DD-interaction relationships can be defined in
terms of the basic relationships between data
declarations allowed by the language, which
represent direct (i.e., not obtained by virtue of the
transitivity of interaction relationships) DD-
interactions. In Ada, data declaration A directly
DD-interacts with data declaration B if A is used in

B's declaration or in a statement where B is

assigned a value. As a consequence, as bodies are
not available at high-level design time, we will
only consider either the interactions detectable
from tim specifications or known by the designer.
DD-interactions provide a means to represent the

relationships between individual data declarations.
Yet, since procedures are not data declarations, DD-
interactions per se are not able to capture the
relationships between individual data declarations
and subprograms, which are useful to understand
whether data declarations and subprograms are
related to each other and therefore should be

encapsulated into the same module (see Section 4
on module cohesion).

Definition 5: Data declaration-Subprogram (DS)
Interaction.

A data declaration DS-interacts with a subprogram
if it DD-interacts with at least one of its data
declarations.
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Whenevera data declaration DD-interacts with at
least one of the data declarations contained in a

subprogram specification, the DS-interaction
relationship between the data declaration and the
subprogram can be detected by examining the
high-level design. For instance, from the code
fragment in Figure 2, it is apparent that both type
T1 and object OBJECTll DS-interact with
procedure Pll, since they both DD-interact with
parameter PARll, one of procedure P11's
specificatiou data declarations.

package Pkl Is

type TI Is ...;
OBJECTI l, OBJECT12: TI;
procedure PII(PAR11: In TI:=OBJECTI I);

package Pk2 Is

OBJECTI3: T1;

type T2 is array (1..I00) of TI;
OBJEC121: I"2;
procedure P21(PAR21: In out T2);

end Pk2;

task Tk is
entry El(PAR12: in out TI);
entry E2(PAR22: in out T2);

end Tk;
o.,

OBJECT22: Pk2.T2;

end Pkl;

Figure 2. Program fragment

On the other hand, there may be DS-interactions
that are not detectable only on the basis of the Ada

code representing the high-level design, since they
are due to DS-interactions occuring in subprogram
bodies. For instance, from the code fragment
above, we cannot tell whether OBJECT12 DS-
interacts (as a global variable) with procedure Pll.

The designers may very likely be able to supply
this additional piece of information. More

specifically, the designers can answer in three
different ways:

(1) OBJECT12 DS-interact with PII
(2) OBJECTI2 does not DS-interact with PI1
(3) the information they have is not sufficient

It is worth saying that answers of kind (2) provide
valuable, though negative, information on the DS-
interaction present in a system.

Remark."
Definition 5 states that DS-interaction is a

relationship between data declarations and a
subprogram, which is a specific kind of module.

Since we are interested in the interactions between

data declarations and algorithms, we did not

provide a more comprehensive definition also
accounting for the relationships between a data
declaration and a package or a task, which are the
other possible kinds of module. As a matter of
fact,

• packages are a means for grouping/encapsulating
data declarations and subprograms (and possibly
tasks and other packages). Therefore, we will not
examine the relationships between a data
declaration and a package as a whole.

• tasks are defined in terms of their entries, i.e.,

they can be seen as a collection of entries, which
we will see as a particular kind of subprograms.
Therefore, we will not examine the relationships
between a data declaration and a task as a whole.

For graphical convenience, both sets of interaction
relationships will be represented by directed
graphs, the DD-interaction graph, and the DS-
interaction graph, respectively. In both graphs (see

Figures 3 and 4, which respectively represent DD-
and DS-interaction graphs for the code fragment of

Figure 2), data declarations are represented by
rounded nodes, subprograms by thick lined boxes,

and packages and tasks by thin lined boxes. Solid
arcs represent interactions that can be known by
either inspecting the high-level design or
collecting information from the designers, dashed

arcs represent those interactions that are not
detectable from the high-level design and that will
not occur in the body, according to the designers'
opinion. (For simplicity's sake, in Figure 3 we
only represent direct DD-interactions.) For
instance, the existence of an DD-interaction
between object OBJECT12 and PARI I and the
lack of interaction between OBJECT13 and

PAR21 have been signaled by the designer. Since
this information may improve significantly the

accuracy of the count of DS-interactions and is in
many eases known by the designers, we strongly
recommend that the reader pay attention to this
issue.

Our approach to design measurement and
evaluation will be based on the above definitions

and will be guided by the general principle that
system architecture should have low average
module coupling and high average cohesion. This
is assumed to improve the capability of a system
to be decomposed in highly independent and easy
to understand pieces. Cohesion captures the extent
to which the data declarations and subprograms

that interact are grouped within the same modules,
whereas coupling captures their dispersion by
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looking at module dependencies and exports. These
issues are _ in the next sections.

__ Pll

Figure 3. DD-intemction graph for the program
fragment in Figure 2

Pkl

Pll

O

Pk2

P21

Figure 4. DS-interaction graph for the program
fragment in Figure 2

4 Module Cohesion

It is generally acknowledged that a high degree of
cohesion is a desirable property of a module. Here,

after a general def'mition for cohesion, we provide
assumptions to restrict it to our specific
viewpoint--change. This allows the definition of
change-oriented cohesion metrics which are also
based on our OOD def'mition of module.

4.1 Definitions

Definition 6: Coheswn (CH)

Cohesion is the extent to which a module only
contains data declarations and subprograms which
are conceptually related to each other.

Assumption A-CH:
From our "change process" viewpoint, a high
degree of cohesion is desirable because information
relevant to a particular change within a module
should not be scattered among irrelevant
information. Data declarations and subprograms
which are not related to each other should be

encapsulated to the extent possible into different
modules. We believe that this issue is especially
important for activity A1.2 (see Figure 1) where
the change requirements have to be understood.

4.2 Cohesive Interactions

Since we place ourselves at the end of high-level
design and we want to look at the set of services
provided by a module, we are interested in
evaluating how tight are the relationships between
the data declarations declared within a module

specification, and between the data declarations and
the subprograms declared there. We will capture
this by means of cohesive interactions.

Definition 6: Cohesive Interaction.
The set of cohesive interactions in a module is the
union of the sets of DS-interactions and DD-

interactions, with the exception of those DD-
interactions between a data declaration and a

subprogram formal parameter.

We do not consider the DD-interactions linking a
data declaration to a subprogram parameter as
relevant to cohesion, since they are already
accounted for by DS-interactions and we are
interested in evaluating the degree of cohesion
between data declarations (data), and procedures
(algorithms) seen as a whole.

Remark.

It is worth reminding the reader that those
relationships that cannot be detected by inspecting

the specifications, i.e., global variables interacting
with subprogram bodies, can actually be quite
relevant to cohesion evaluation, because they often
represent the connections between an object and
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the subprograms that access it; such connections
are the relationships that make an abstract object
cohesive.

4.3 Cohesion Metrics

Based upon the above definition of cohesive
interactions, we define a cohesion metric that
satisfies the following two properties.

PropertyI:Normalization.
Given a module m, themetriccohesion(m)

belongstotheinterval[0,1].

Normalization allows meaningful comparisons
between the cohesions of different modules, since
they all belong to the same interval.

Property 2: Monotonicity.
Let mI be a module and CII its set of cohesive
interactions. If m2 is a modified version of ml
with one more cohesive interaction so that CI2
includes CI1, then cohesion(m2) >-cohesion(m1).

Since there is uncertainty on the DD- and DS-
interactions present in a module, due to the
incompleteness of the information that can be
collected from the specifications and the designers,
we define not only a metric but the boundaries of
an uncertainty interval.

Definition 7: Ratios of Cohesive Interactions.

Neutral Ratio of Cohesive Interactions (NRCI):
All unknown CIs are not taken into account

NRCI-#knownCls/(#potentialCIs-#unknownCIs)

PessimisticRatio of Cohesive Interactions

(PRO):
All unknown Cls ate considered as if they where
known not to be actualinteractions.

PRCI = #knownCIs/#potentialCIs

Optimistic Ratio of Cohesive Interactions (ORCI):
All unknown CIs are considered as if they where
known to be actual interactions

ORCI=(#knownCIs #unknownCIs)/#potentialCIs

If PRCI, NRCI, and ORCI are all not undefined, it
can be shown that

PRCI < NRCI -<ORCI

Figure 5 shows representative and interesting
examples of module cohesion computation. Each
thin lined box represents a module specification.
'Us, O's, and SP's will characterize types, objects
and subprograms, respectively. We did not
represent procedure parameters, since they do not
belong to any cohesive interaction, nor packages
nor tasks, since they are inessential to our
discussion. However, we represented all direct and
transitive interactions.

CalJ¢ 1 C_¢2

C._¢5

© ,El

rm

Figure 5: Cohesion examples

Case 1: No cohesive interaction is present

PRCI = 0/12 = 0
NRCI = 0/12 = 0
ORCI = 0/12 = 0

Case 2: All possible cohesive interactions are
present

PRCI = 12/12 = 1
NRCI = 12/12 = 1
ORCI = 12/12 = 1

Case 3: Incomplete interaction graph

PRCI = 4F/= .571
NRCI = 4/5 = .8
ORCI = 6/7 = .857
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Case4:Isolated object
O1 has been added to Case 3. This decreases
cohesion because O1 has no known interactions
with the rest of the module data declarations and
subprograms.

PRCI = 4/12 ffi.333
NRCI = 4/7 = .571
ORCI = 9/12 = .75

Case 5: Single object

PRCI = 0/3 = 0
NRCI (= 0/0) = undefined
ORCI = 3/3= I

No information is available on the interactions
between object O and the three subprograms.
Therefore, ORCI and PRCI provide the bounds of
the admissible range for cohesion, and NRCI is
undefined, i.e., it could take any value in between.
The more incomplete the information, the wider
the uncertainty interval.

5 Module Coupling

According to commonly accepted design
principles, design must show low coupling
between modules. In this section, we first give
general definitions and assumptions on coupling
(Section 5.1). Then, we present a set of metrics
(Section 5.2), and discuss the issue of genericity
(Section 5.3) in the context of coupling.

5.1 Definitions

Definition 8."Import Coupling of a module (IC):
Import Coupling is the extent to which a module
depends on imported external data declarations.

Assumption A-IC:
The more dependent a module on external data
declarations, the more difficult it is to understand
in isolation. In other words, the larger the amount
of external data declarations, the more incomplete
the local description of the module specification,
the more spread the information necessary to
isolate and understand a change. Thus, if there is a
high average coupling within a set of modules,
both activities A1.1 and A1.2 in Figure 1 are
affected. The design of the change (phase P2 in
Figure 1) is also more complex.

Definition 9: Export Coupling of a module (EC).
Export coupling is the extent to which a module's
internal data declarations affect the data declarations
of the other modules in the system.

Assumption A-EC:
Export coupling is related to how a particular
module is used in the system. As such, EC should
have a direct impact on understanding the effect of
a change on the rest of the system, and on
validating the system after the change.
The larger the number of DD-interactions with
external data declarations, the larger the likelihood
of ripple effects when a change is implemented
(activity A4.2 in Figure 1). Also, the larger the
number of potential DD-interactions, the more
complex testing and verification become, since
potential side effects have to be identified and
addressed based on actual DD-interactions
(activities A4.1 and A4.2 in Figure 1).

The import coupling of a module will be expressed
in terms of the actual DD-interactions between
imported/visible external data declarations (i.e.
global) and the internal data declarations of the
module. Export coupling will be based on both the
actual and potential DD-interactions between
locally defined data declarations and the other data
declarations within the scope of the module.
Actual DD-interactions are important because they
capture the actual dependencies between a module
and its context of declaration and therefore should
be closely related to the likelihood of ripple
effects. According to the defined assumption, the
number of potential DD-interactions of a module
with its context of declaration should be related to

the ease of verifying and testing the side effects of
the implemented change. These potential DD-
interactions will simply be determined by the
programming language visibility rules.

5.2 Metrics Based on Coupling

The issue will be first addressed by ignoring
generic modules for the sake of simplification.
Generic modules and their impact on the defined
metrics will be treated in Section 5.3.

Definition I0: Global versus Locally defined data
declarations
We will denote by Global(m) the set of all the
external data declarations imported by a module m,
and by Local(m) the set of all the locally defined
data declarations in module m.

Definition 11: Scope of a module
Scope(m) is the set of all data declarations declared
outside the module for which the internal data
declarations of module m are visible.
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Definition 12: Import Coupling
We will use the following metric to capture
Import Coupling

IC(m)= DD-interactions(Global(m), Local(m))

In the above definition, we have considered all sort
of imports equally. However, in terms of impact
on the change difficulty in a particular module,
imports from the same hierarchy or the same
subsystem do not equate with imports from
outside the module's hierarchy or subsystem. There
are several reasons for this, e.g., people may have
a better familiarity with the subsystem they are in
charge of maintaining, understanding a module in
another hierarchy increases the load of information
to be known for understanding the change.
Although we do not fully investigate this complex
issue here, a simple solution to refine IC could be
to define all the metrics presented below separately
for several categories of coupling, e.g., coupling
with modules outside the subsystem.
Each box in Figure 6 represents a module
specification. Submodule specifications C2 and C3
are located in their parent's body C1. C2 is
assumed to be declared before C3 and therefore
visible to C3. The lnstO, Sub(), Derived(),
VaIDepO and Coast() functions specify if one data
declaration is respectively the object instantiation
of a type, a subtype of a type, the derived type of
another type, an object dependent on the value of
another object (e.g. initialization), an object used
to constrain a type or another object definition.
Note that the same data declaration may interact
with several data declarations, e.g., T21 in Figure
6. Tij and Oij data declarations represent
respectively types and objects in module Ci. FPij
represents subprogram formal parameters. Even
though they are objects, we identified them by a
different symbol in order to improve the figure
readability. The IC values for the modules in
Figure 6 are computed as follows

IC(m) = direct DD-interactions + transitive DD-
interactions

IC(C1) = 0 + 0 = 0
IC(C2) = 3 + 1 = 4
-- fromC1 (direct: O11 twice,T12; transitive: T21)
IC(C3) = 2 + 2 = 4
-- from C1 (direct: T12; transitive: T12 twice) and

C2 (direct: T21)
IC(C4) = 1 + 0 = i -- from C1 (direct: Tll)

Definition 13: Potential and Actual Export
Coupling
As presented in the assumption A-EC, both actual
and potential coupling need to be measured.

n2_)=_ saJlxtm))

EC-Potential(m) = [Local(m)l. IScope(m)l

CI

Tll

O11 =ImatTi1)
FP110 FPI2
T12

with

C4

I"41

O41 = In_(r41)

FP41= Ir_0rlI)

Fit42 = Ir_r4 I)

C2 6"3

T21 = Derlvod(rl2) I"31= SubO'l2)

T21 = con_(Ol I) O31 = In_(T21)

O21 = VaIDep(OlI) b-'P31=Inst(T3I)

FP21=In_(T21)

Figure 6: Calculation of IC and EC with non-
generic components only

In the example of Figure 6, illustrated by the
results presented below, we see that C1 expectedly
shows the largest actual and potential export
coupling.

EC-Actual(m) = direct DD-interactions + transitive
DD-interactions

EC-Actual(C1) = 5 + 3 = 8
-- to C2 (direct: T12, Oll twice; transitive: TI2),
-- to C3 (direct: T12; transitive: T12 twice),
-- to C4 (direct: Tll)
EC-Actual(C2) = 1 + 1 = 2
-- to C3 (direct: "121; transitive: T21)
EC-Actuai(C3) = 0 + 0 = 0
EC-ActuaI(C4) = O + 0 = 0

EC-Potential(C1) = 5- 10 = 50
EC-Potential(C2) = 3 • 3 = 9
EC-Potential(C3) = 3 • 0 = 0
EC-Potential(C4) = 3 • 0 = 0

We now introduce a normalized measure, Relative

Dependency, to capture how dependent a module is
on external data declarations with respect to the
whole set of data declarations it can access, i.e.,
the external data declarations and its own data
declarations. This normalized measure may
contribute to capture the difficulty of the
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understanding process described in assumption A-
IC, along with the absolute IC measure.

Definition 14: Relative Dependency (RD)
The relative dependency of a module m is the ratio
of Import Coupling normalized by the total
number of DD-interactions, i.e., within m itself
and between the data declarations external to m and
m.

RD(m) = IC(m)/(DD-interactions_(m),
Local(m)) + IC(m))

RD(m) is therefore a unitless measure of import
coupling of the module with the rest of the system
which is relative to the total numberof DD-
interactions. Thus, a large module with a large
import coupling might show a somewhat low
relative depeadency.

For Figure 6, we obtain the following results:

DD-interactions(C1, C1) = 1
DD-interactions(C2, C2) = 1
DD-interactions(C3, C3) = 1
DD-interactions(C4, (24) = 2

RD(C1) = 0/(1+0) ffi0
RD(C2) = 4/(1+4) = 0.8
RD(C3) = 4/(1+4) = 0.8
RD(C4) = 1/(2+1) = 0.33

We can differentiate two main families of modules,
based on IC and EC: "servers", i.e., provider of
services, and "clients", i.e., users of services.

Definition 15: Coupling type (CT)
The coupling type of a module m is the ratio of
Import Coupling normalized by the total Export
and Import Coupling of module m.

CT(m) = IC(m)/(EC-Actual(m) + IC(m))

When CT < 0.5, then the module is more of the
type "server"; otherwise, it can be classified as a
"client". The first type of modules is expected to
be more often at the top of the system hierarchies
while the second type should be more common at
the bottom of those hierarchies. This is what

happens in the example in Figure 6, as the results
presented below show.

CT(C1) = 0/(8+0) = 0 - server
CT(C2) = 4/(2+4) = 0.66 -- troeofthedimt type
CT(C3) = 4/(0+4) = 1 -- client
CT(C4) = 1/(04-1) = 1 -- client

Exceptions to this pattern may be the symptom of
anomalies in system design.

5.3 The Treatment of Generic
Modules

There are two possible ways of taking into account
genetics when calculating coupling. Either each
instance may be seen as a different module or a
genetic may be seen as any other module whose
scope/global data declarations is/are the union of
the scope/global data declarations of its instances.
The second solution does not consider instances as

independent modules and appears to be more
suitable to our specific perspective (i.e., the
change process) since instances cannot be modified
direcdy and only one module is to be maintained:
the genetic module. In other words, if N instances
are generated, we will not count coupling as if N
modules were actually developed since those
instances may only undertake change through their
corresponding genetic module. Generic formal
parameters allow for the substitution of objects,
types and subprograms. This substitution does not
have any impact on the number and the kind of
exported data declarations (i.e. same number of
type, object declarations respectively imported and
exported).
When calculating import coupling, we will count
the DD-interactions of the genetic modules with
the union of the global data declarations specific to
their instances. When calculating export coupling,
we will count the DD-interactions of the genetic
modules within the union of the scope of their
respective instances. Consistent with the definition
of DD-interaction, generic formal parameters DD-
interact with their particular generic actual
parameters (i.e. type, object) when the genetic
module is instantiated since a change in the former
may imply a change in the latter.
This is what the following example illustrates.
The graphical formalism is identical to the one
used in Figure 6 and function New(G, P)
represents a new instantiation of a genetic package
or subprogram G with a genetic formal parameter
GFPI and its genetic actual parameter set [P1,
t'2}.
C2 and C3 only import data declarations from G
(with TG1). C1 imports from G (PI, P2 DD-
interact with FGP1).

IC(m) = direct DD-interactions + transitive DD-
interactions

IC(C1) = 2 + 0 = 2
IC(C2) = 2 + 1 = 3
IC(C3) = 3 + 1 = 4
IC(G) = 0 + 0 = 0

-- from G
-- from G and C1
-- from G and C 1
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EC(m) = direct DD-interactions + transitive DD-
interactions

EC-Actual(C1) = 2 + 2 = 4
EC-Actual(C2) = 0 + 0 = 0

EC-Actual(C3) = 0 + 0 = 0
EC-Actual(G) = 5 + 0 = 5

-- toC2, C3

--to C1, C2, C3

cI

rl i

G1 = New(G, Pl)
G2 = New(G, P2)

with

Oenedc G

GFPI

_" TGI

FI_I = Ia_(TGI)

C3C2

T2! = Derived(T1 I)

O21 = last(T2])
FP2 I=hm(GI.TGI)

T31 = Da'ived(Ti 1)

O31 :- last('IBl)
032 = last(O2.TGl)
F'P31 = Imt(G2.TOl)

Figure 7: Generics when calculating coupling

The RD mea'ic shows that G is the only fully
independent modulc. The others strongly depend on
external data declarations:

DD-interactions(C1) = 0
DD-intemctions(C2) = 1
DD-interactions(C3) = 1
DD-interactions(G) = 1

RD(C1) = 2 / (0+ 2) = 1
RD(C2) = 3 / (1 + 3) = 0.75
RIXC3) = 4 / (1 + 4) = 0.8
RD(G) = 0 / (1 +0)=0

6 A Visibility Control Metric Based

on Coupling

As opposed to the metrics presented in previous
sections, this metric does not characterize modules
but sets of modules. Here, we want to assess to

which extent visibility is controlled in the design
of a system, subsystems or any system part [G86,
AE92]. Thus, we want to identify design flaws
related to vis_ility.

Assumption A-VC:

If the system, the subsystem or the hierarchy has
been designed by following minimal visibility
rules, modules with larger potential export

coupling should also have larger actual export
coupling. This is the case in the above example
where the ranking according to EC.Potential is
identical to the ranking by EC-Actual. Therefore,
we want to measure the correlation between EC-
Actual and EC-Potential in order to determine

whether or not highly visible modules are also
highly used modules. In other words, this can be
interpreted as how well visibility is controlled
within the system or a part thereof.

Remark.

We do not intend to judge the designer work
through this process, since other constraints may
bias the design towards a non optimal visibility
control. We look at it from the narrow perspective
of the change process, leaving to the designer the

decision of possible tradeoffs between
maintainability and other criteria, e.g.,

perfommnce.

We do not want the measure of correlation to be

based on parametric assumptions since we do not
know what kind of relationship to expect between

actual and potential export coupling[CAP88]. One
way of doing it is to use a non-parametric statistic
which takes into account the rank of each module

with respect to both EC-potential and EC.actual.
This type of statistic does not require any
functional assumption and is moreover robust to
outliers. Thus, we will be protected against

illusory strong correlations due to oufliers and
falsely weak correlations due to wrong functional
assumptions. If visibility is close to minimal, we
assume the ranks of the modules to be similar

with respect to those two metrics.

Definition 16: Visibility control (VC)
The visibility control of a set of modules SM
(VC(SM)) is measured by means of the

Spearman's rank correlation coefficient [CAP88]
between the actual Export Coupling and the

potential Expert Coupling

VC(SM)=I-[Zme SM(D2(m))/(ISMI(ISMI 2- 1)/6)]

where D(m) = Rank(EC - Actual(m)) - Rank(EC-
Potential(m))

The larger VC(SM), the closer to minimal the
visibility. When there is no association, it can be
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shown that Z,raE SM(Distance2(m)) = (ISMI(ISMI 2

- 1) / 6), so VC(SM) = O.

7 Conclusions

In this paper, we have presented a comprehensive
approach for evaluating the high-level design of
software systems which is summarized by the
following characteristics:

• early available metrics based on precisely defined
assumptions and related without ambiguity to
the defined change process model

• definitions of module cohesion, module

coupling and visibility control consistently
based on the notion of interaction, which is

closely related to the phenomenon of change side
effects

• an OOD 1!3087] view of a software module as

opposed to the usual subroutine perspective
[M77, YC79] of coupling and cohesion
evaluation

• a clear separation between Ada-specific and
language-independent concepts.

Our future research will encompass:

• the definition and refinement of other higher-
level metrics based on module coupling and
cohesion that will characterize higher-level
constructs, e.g., module hierarchies,
subsystems.

• the experimental validation of the proposed
metrics with respect to change difficulty (i.e.,
man-hours) and size (i.e., number of modules
changed, lilies of code removed, changed, added).

• the development of high level metrics based on
other software engineering principles, such as
information hiding and reuse.
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